星光直播
星光直播
报告[2025] 093号
(高水平大学建设系列报告1115号)
报告题目:A data-driven approach for independence testing in multivariate time series based on Chatterjee's rank correlation
报告人:王国长 教授(暨南大学)
报告时间:2025年10月14日下午16:00-17:00
报告地点:校友广场303会议室
报告摘要:Verifying whether a multivariate time series follows an independent and identically distributed (i.i.d.) sequence is a critical issue.This paper introduces a novel method for testing this assumption by analyzing the dependency structure inherent in the data. Specifically, we utilize Chatterjee's rank correlation to develop a new analytical tool, termed the auto-Chatterjee's rank correlation matrix (ACRCM). Each element of the ACRCM quantifies Chatterjee's rank correlation, effectively capturing nonlinear dependencies within the observed series. We develop an ACRCM-based statistic with fixed order for testing independence in multivariate time series, which asymptotically follows a chi-squared distribution under the assumption of independence. Furthermore, we introduction a data-driven approach for automatically determining the optimal order based on the data characteristics.This data-driven approach offers three key advantages:first, it eliminates the need for manually specifying the order, as the optimal order is automatically selected based on the data;second, under the null hypothesis, the selected order is one, and the chi-square distribution has degrees of freedom correspond to the square of the data dimension;third, the proposed data-driven approach demonstrates superior sensitivity to detecting high-order dependencies.We rigorously derive the asymptotic properties of the proposed method and validate its effectiveness through extensive simulation experiments.
报告人简介:王国长,暨南大学经济星光直播
统计与数据科学系,教授、博士生导师。主要研究方向为函数型数据,时间序列和机器学习,至今在JoE、JBES、Sinica和Scandinavian Journal of Statistics等重要星光直播
期刊发表论文30余篇。主持国家级项目4项,省部级项目4项。任中国旅游大数据协会,副理事;广东省现场统计协会常务理事,秘书长。
欢迎师生参加!
邀请人:王江洲
星光直播
2025年9月30日